Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Early warning of complex climate risk with integrated artificial intelligence

Urheber*innen

Reichstein,  Markus
External Organizations;

Benson,  Vitus
External Organizations;

Blunk,  Jan
External Organizations;

Camps-Valls,  Gustau
External Organizations;

/persons/resource/Felix.Creutzig

Creutzig,  Felix       
Potsdam Institute for Climate Impact Research;

Fearnley,  Carina J.
External Organizations;

Han,  Boran
External Organizations;

Kornhuber,  Kai
External Organizations;

Rahaman,  Nasim
External Organizations;

Schölkopf,  Bernhard
External Organizations;

Tárraga,  José María
External Organizations;

Vinuesa,  Ricardo
External Organizations;

Dall,  Karen
External Organizations;

Denzler,  Joachim
External Organizations;

Frank,  Dorothea
External Organizations;

Martini,  Giulia
External Organizations;

Nganga,  Naomi
External Organizations;

Maddix,  Danielle C.
External Organizations;

Weldemariam,  Kommy
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

s41467-025-57640-w.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Reichstein, M., Benson, V., Blunk, J., Camps-Valls, G., Creutzig, F., Fearnley, C. J., Han, B., Kornhuber, K., Rahaman, N., Schölkopf, B., Tárraga, J. M., Vinuesa, R., Dall, K., Denzler, J., Frank, D., Martini, G., Nganga, N., Maddix, D. C., Weldemariam, K. (2025): Early warning of complex climate risk with integrated artificial intelligence. - Nature Communications, 16, 2564.
https://doi.org/10.1038/s41467-025-57640-w


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_32995
Zusammenfassung
As climate change accelerates, human societies face growing exposure to disasters and stress, highlighting the urgent need for effective early warning systems (EWS). These systems monitor, assess, and communicate risks to support resilience and sustainable development, but challenges remain in hazard forecasting, risk communication, and decision-making. This perspective explores the transformative potential of integrated Artificial Intelligence (AI) modeling. We highlight the role of AI in developing multi-hazard EWSs that integrate Meteorological and Geospatial foundation models (FMs) for impact prediction. A user-centric approach with intuitive interfaces and community feedback is emphasized to improve crisis management. To address climate risk complexity, we advocate for causal AI models to avoid spurious predictions and stress the need for responsible AI practices. We highlight the FATES (Fairness, Accountability, Transparency, Ethics, and Sustainability) principles as essential for equitable and trustworthy AI-based Early Warning Systems for all. We further advocate for decadal EWSs, leveraging climate ensembles and generative methods to enable long-term, spatially resolved forecasts for proactive climate adaptation.