Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The size distribution of spatiotemporal extreme rainfall clusters around the globe

Urheber*innen
/persons/resource/traxl

Traxl,  Dominik
Potsdam Institute for Climate Impact Research;

/persons/resource/Niklas.Boers

Boers,  Niklas
Potsdam Institute for Climate Impact Research;

/persons/resource/rheinwalt

Rheinwalt,  Aljoscha
Potsdam Institute for Climate Impact Research;

/persons/resource/goswami

Goswami,  Bedartha
Potsdam Institute for Climate Impact Research;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

7351oa.pdf
(beliebiger Volltext), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Traxl, D., Boers, N., Rheinwalt, A., Goswami, B., Kurths, J. (2016): The size distribution of spatiotemporal extreme rainfall clusters around the globe. - Geophysical Research Letters, 43, 18, 9939-9947.
https://doi.org/10.1002/2016GL070692


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_21184
Zusammenfassung
The scaling behavior of rainfall has been extensively studied both in terms of event magnitudes and in terms of spatial extents of the events. Different heavy‐tailed distributions have been proposed as candidates for both instances, but statistically rigorous treatments are rare. Here we combine the domains of event magnitudes and event area sizes by a spatiotemporal integration of 3‐hourly rain rates corresponding to extreme events derived from the quasi‐global high‐resolution rainfall product Tropical Rainfall Measuring Mission 3B42. A maximum likelihood evaluation reveals that the distribution of spatiotemporally integrated extreme rainfall cluster sizes over the oceans is best described by a truncated power law, calling into question previous statements about scale‐free distributions. The observed subpower law behavior of the distribution's tail is evaluated with a simple generative model, which indicates that the exponential truncation of an otherwise scale‐free spatiotemporal cluster size distribution over the oceans could be explained by the existence of land masses on the globe.