Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Global warming overshoots increase risks of climate tipping cascades in a network model

Urheber*innen
/persons/resource/Nico.Wunderling

Wunderling,  Nico
Potsdam Institute for Climate Impact Research;

/persons/resource/Ricarda.Winkelmann

Winkelmann,  Ricarda
Potsdam Institute for Climate Impact Research;

/persons/resource/johan.rockstrom

Rockström,  Johan
Potsdam Institute for Climate Impact Research;

/persons/resource/sina.loriani

Loriani,  Sina
Potsdam Institute for Climate Impact Research;

McKay,  David I. Armstrong
External Organizations;

Ritchie,  Paul D. L.
External Organizations;

/persons/resource/Boris.Sakschewski

Sakschewski,  Boris
Potsdam Institute for Climate Impact Research;

/persons/resource/Donges

Donges,  Jonathan Friedemann
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

27628oa.pdf
(Postprint), 7MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wunderling, N., Winkelmann, R., Rockström, J., Loriani, S., McKay, D. I. A., Ritchie, P. D. L., Sakschewski, B., Donges, J. F. (2023): Global warming overshoots increase risks of climate tipping cascades in a network model. - Nature Climate Change, 13, 75-82.
https://doi.org/10.1038/s41558-022-01545-9


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_27628
Zusammenfassung
Current policies and actions make it very likely, at least temporarily, to overshoot the Paris climate targets of 1.5–<2.0 °C above pre-industrial levels. If this global warming range is exceeded, potential tipping elements such as the Greenland Ice Sheet and Amazon rainforest may be at increasing risk of crossing critical thresholds. This raises the question of how much this risk is amplified by increasing overshoot magnitude and duration. Here we investigate the danger for tipping under a range of temperature overshoot scenarios using a stylized network model of four interacting climate tipping elements. Our model analysis reveals that temporary overshoots can increase tipping risks by up to 72% compared with non-overshoot scenarios, even when the long-term equilibrium temperature stabilizes within the Paris range. Our results suggest that avoiding high-end climate risks is possible only for low-temperature overshoots and if long-term temperatures stabilize at or below today’s levels of global warming.