Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Deep Learning for Bias-Correcting CMIP6-Class Earth System Models

Urheber*innen
/persons/resource/philipp.hess

Hess,  Philipp
Potsdam Institute for Climate Impact Research;

/persons/resource/slange

Lange,  Stefan
Potsdam Institute for Climate Impact Research;

/persons/resource/Christof.Schoetz

Schötz,  Christof
Potsdam Institute for Climate Impact Research;

/persons/resource/Niklas.Boers

Boers,  Niklas
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

Hess_2023_2301.01253.pdf
(Preprint), 10MB

28779oa.pdf
(Verlagsversion), 8MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hess, P., Lange, S., Schötz, C., Boers, N. (2023): Deep Learning for Bias-Correcting CMIP6-Class Earth System Models. - Earth's Future, 11, 10, e2023EF004002.
https://doi.org/10.1029/2023EF004002


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_28779
Zusammenfassung
The accurate representation of precipitation in Earth system models (ESMs) is crucial for reliable projections of the ecological and socioeconomic impacts in response to anthropogenic global warming. The complex cross-scale interactions of processes that produce precipitation are challenging to model, however, inducing potentially strong biases in ESM fields, especially regarding extremes. State-of-the-art bias correction methods only address errors in the simulated frequency distributions locally at every individual grid cell. Improving unrealistic spatial patterns of the ESM output, which would require spatial context, has not been possible so far. Here, we show that a post-processing method based on physically constrained generative adversarial networks (cGANs) can correct biases of a state-of-the-art, CMIP6-class ESM both in local frequency distributions and in the spatial patterns at once. While our method improves local frequency distributions equally well as gold-standard bias-adjustment frameworks, it strongly outperforms any existing methods in the correction of spatial patterns, especially in terms of the characteristic spatial intermittency of precipitation extremes.