Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Rainfall seasonality dominates critical precipitation threshold for the Amazon forest in the LPJmL vegetation model

Urheber*innen
/persons/resource/da.nian

Nian,  Da
Potsdam Institute for Climate Impact Research;

/persons/resource/sebastian.bathiany

Bathiany,  Sebastian
Potsdam Institute for Climate Impact Research;

/persons/resource/Boris.Sakschewski

Sakschewski,  Boris
Potsdam Institute for Climate Impact Research;

/persons/resource/markus.drueke

Drüke,  Markus
Potsdam Institute for Climate Impact Research;

/persons/resource/lana.blaschke

Blaschke,  Lana
Potsdam Institute for Climate Impact Research;

/persons/resource/maja.benyami

Ben-Yami,  Maya
Potsdam Institute for Climate Impact Research;

/persons/resource/Werner.von.Bloh

von Bloh,  Werner
Potsdam Institute for Climate Impact Research;

/persons/resource/Niklas.Boers

Boers,  Niklas
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

30011oa.pdf
(Verlagsversion), 8MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nian, D., Bathiany, S., Sakschewski, B., Drüke, M., Blaschke, L., Ben-Yami, M., von Bloh, W., Boers, N. (2024): Rainfall seasonality dominates critical precipitation threshold for the Amazon forest in the LPJmL vegetation model. - Science of the Total Environment, 947, 174378.
https://doi.org/10.1016/j.scitotenv.2024.174378


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_30011
Zusammenfassung
Understanding the Amazon Rainforest's response to shifts in precipitation is paramount with regard to its sensitivity to climate change and deforestation. Studies using Dynamic Global Vegetation Models (DGVMs) typically only explore a range of socio-economically plausible pathways. In this study, we applied the state-of-the-art DGVM LPJmL to simulate the Amazon forest's response under idealized scenarios where precipitation is linearly decreased and subsequently increased between current levels and zero. Our results indicate a nonlinear but reversible relationship between vegetation Above Ground Biomass (AGB) and Mean Annual Precipitation (MAP), suggesting a threshold at a critical MAP value, below which vegetation biomass decline accelerates with decreasing MAP. We find that approaching this critical threshold is accompanied by critical slowing down, which can hence be expected to warn of accelerating biomass decline with decreasing rainfall. The critical precipitation threshold is lowest in the northwestern Amazon, whereas the eastern and southern regions may already be below their critical MAP thresholds. Overall, we identify the seasonality of precipitation and the potential evapotranspiration (PET) as the most important parameters determining the threshold value. While vegetation fires show little effect on the critical threshold and the biomass pattern in general, the ability of trees to adapt to water stress by investing in deep roots leads to increased biomass and a lower critical threshold in some areas in the eastern and southern Amazon where seasonality and PET are high. Our findings underscore the risk of Amazon forest degradation due to changes in the water cycle, and imply that regions that are currently characterized by higher water availability may exhibit heightened vulnerability to future drying.