Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Buchkapitel

Entangled Gondolas. Design of Multi-layer Networks of Quantum-Driven Robotic Swarms

Urheber*innen

Mannone,  Maria
External Organizations;

/persons/resource/Marwan

Marwan,  Norbert       
Potsdam Institute for Climate Impact Research;

Seidita,  Valeria
External Organizations;

Chella,  Antonio
External Organizations;

Giacometti,  Achille
External Organizations;

Fazio,  Peppino
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mannone, M., Marwan, N., Seidita, V., Chella, A., Giacometti, A., Fazio, P. (2024): Entangled Gondolas. Design of Multi-layer Networks of Quantum-Driven Robotic Swarms. - In: Villani, M., Cagnoni, S., Serra, R. (Eds.), Artificial Life and Evolutionary Computation, (Communications in Computer and Information Science ; 1977), Cham : Springer, 177-189.
https://doi.org/10.1007/978-3-031-57430-6_14


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_30034
Zusammenfassung
Swarms of robots can be thought of as networks, using the tools from telecommunications and network theory. A recent study designed sets of aquatic swarms of robots to clean the canals of Venice, interacting with computers on gondolas. The interaction between gondolas is one level higher in the hierarchy of communication. In other studies, pairwise communications between the robots in robotic swarms have been modeled via quantum computing. Here, we first apply quantum computing to the telecommunication-based model of an aquatic robotic swarm. Then, we use multilayer networks to model interactions within the overall system. Finally, we apply quantum entanglement to formalize the interaction and synchronization between “heads” of the swarms, that is, between gondolas. Our study can foster new strategies for search-and-rescue robotic-swarm missions, strengthening the connection between different areas of research in physics and engineering.