English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

Entangled Gondolas. Design of Multi-layer Networks of Quantum-Driven Robotic Swarms

Authors

Mannone,  Maria
External Organizations;

/persons/resource/Marwan

Marwan,  Norbert
Potsdam Institute for Climate Impact Research;

Seidita,  Valeria
External Organizations;

Chella,  Antonio
External Organizations;

Giacometti,  Achille
External Organizations;

Fazio,  Peppino
External Organizations;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PIKpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Mannone, M., Marwan, N., Seidita, V., Chella, A., Giacometti, A., Fazio, P. (2024): Entangled Gondolas. Design of Multi-layer Networks of Quantum-Driven Robotic Swarms. - In: Villani, M., Cagnoni, S., Serra, R. (Eds.), Artificial Life and Evolutionary Computation, (Communications in Computer and Information Science ; 1977), Cham : Springer, 177-189.
https://doi.org/10.1007/978-3-031-57430-6_14


Cite as: https://publications.pik-potsdam.de/pubman/item/item_30034
Abstract
Swarms of robots can be thought of as networks, using the tools from telecommunications and network theory. A recent study designed sets of aquatic swarms of robots to clean the canals of Venice, interacting with computers on gondolas. The interaction between gondolas is one level higher in the hierarchy of communication. In other studies, pairwise communications between the robots in robotic swarms have been modeled via quantum computing. Here, we first apply quantum computing to the telecommunication-based model of an aquatic robotic swarm. Then, we use multilayer networks to model interactions within the overall system. Finally, we apply quantum entanglement to formalize the interaction and synchronization between “heads” of the swarms, that is, between gondolas. Our study can foster new strategies for search-and-rescue robotic-swarm missions, strengthening the connection between different areas of research in physics and engineering.