English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Evaluation of the real-time El Niño forecasts by the climate network approach between 2011 and present

Authors

Bunde,  Armin
External Organizations;

/persons/resource/Josef.Ludescher

Ludescher,  Josef
Potsdam Institute for Climate Impact Research;

/persons/resource/emdir

Schellnhuber,  Hans Joachim
Potsdam Institute for Climate Impact Research;

External Ressource
No external resources are shared
Fulltext (public)

30090oa.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Bunde, A., Ludescher, J., Schellnhuber, H. J. (2024): Evaluation of the real-time El Niño forecasts by the climate network approach between 2011 and present. - Theoretical and Applied Climatology, 155, 6727-6736.
https://doi.org/10.1007/s00704-024-05035-0


Cite as: https://publications.pik-potsdam.de/pubman/item/item_30090
Abstract
El Niño episodes are part of the El Niño-Southern Oscillation (ENSO), which is the strongest driver of interannual climate variability, and can trigger extreme weather events and disasters in various parts of the globe. Previously we have described a network approach that allows to forecast El Niño events about 1 year ahead. Here we evaluate the real-time forecasts of this approach between 2011 and 2022. We find that the approach correctly predicted (in 2013 and 2017) the onset of both El Niño periods (2014-2016 and 2018-2019) and generated only 1 false alarm in 2019. In June 2022, the approach correctly forecasted the onset of an El Niño event in 2023. For determining the p-value of the 12 real-time forecasts, we consider 2 null hypotheses: (a) random guessing where we assume that El Niño onsets occur randomly, and (b) correlated guessing where we assume that in the year an El Niño ends, no new El Niño will start. We find and , this way rejecting both the null hypotheses that the same quality of the forecast can be obtained by chance. We also discuss how the network algorithm can be further improved by systematically reducing the number of false alarms. For 2024, the method indicates the absence of a new El Niño event.