Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Evaluation of the real-time El Niño forecasts by the climate network approach between 2011 and present

Urheber*innen

Bunde,  Armin
External Organizations;

/persons/resource/Josef.Ludescher

Ludescher,  Josef
Potsdam Institute for Climate Impact Research;

/persons/resource/emdir

Schellnhuber,  Hans Joachim
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

30090oa.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bunde, A., Ludescher, J., Schellnhuber, H. J. (2024): Evaluation of the real-time El Niño forecasts by the climate network approach between 2011 and present. - Theoretical and Applied Climatology, 155, 6727-6736.
https://doi.org/10.1007/s00704-024-05035-0


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_30090
Zusammenfassung
El Niño episodes are part of the El Niño-Southern Oscillation (ENSO), which is the strongest driver of interannual climate variability, and can trigger extreme weather events and disasters in various parts of the globe. Previously we have described a network approach that allows to forecast El Niño events about 1 year ahead. Here we evaluate the real-time forecasts of this approach between 2011 and 2022. We find that the approach correctly predicted (in 2013 and 2017) the onset of both El Niño periods (2014-2016 and 2018-2019) and generated only 1 false alarm in 2019. In June 2022, the approach correctly forecasted the onset of an El Niño event in 2023. For determining the p-value of the 12 real-time forecasts, we consider 2 null hypotheses: (a) random guessing where we assume that El Niño onsets occur randomly, and (b) correlated guessing where we assume that in the year an El Niño ends, no new El Niño will start. We find and , this way rejecting both the null hypotheses that the same quality of the forecast can be obtained by chance. We also discuss how the network algorithm can be further improved by systematically reducing the number of false alarms. For 2024, the method indicates the absence of a new El Niño event.