???ENUM_LANGUAGE_JA???
 
???mainMenu_lnkPrivacyPolicy??? ???mainMenu_lnkPolicy???

???ViewItemPage???


???ENUM_STATE_RELEASED???

???ENUM_GENRE_ARTICLE???

Synchronization cluster bursting in adaptive oscillator networks

???ViewItemOverview_lblSpecificAuthorsSection???

Wei,  Mengke
External Organizations;

/persons/resource/andreas.amann

Amann,  Andreas
Potsdam Institute for Climate Impact Research;

/persons/resource/oleksandr.burylko

Burylko,  Oleksandr
Potsdam Institute for Climate Impact Research;

Han,  Xiujing
External Organizations;

/persons/resource/yanchuk

Yanchuk,  Serhiy
Potsdam Institute for Climate Impact Research;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

???ViewItemOverview_lblExternalResourceSection???
???ViewItemOverview_noExternalResourcesAvailable???
???ViewItemOverview_lblRestrictedFulltextSection???
???ViewItemOverview_noRestrictedFullTextsAvailable???
???ViewItemOverview_lblFulltextSection???
???ViewItemOverview_noFullTextsAvailable???
???ViewItemOverview_lblSupplementaryMaterialSection???
???ViewItemOverview_noSupplementaryMaterialAvailable???
???ViewItemOverview_lblCitationSection???

Wei, M., Amann, A., Burylko, O., Han, X., Yanchuk, S., Kurths, J. (2024): Synchronization cluster bursting in adaptive oscillator networks. - Chaos, 34, 12, 123167.
https://doi.org/10.1063/5.0226257


???ViewItemOverview_lblCiteAs???: https://publications.pik-potsdam.de/pubman/item/item_31726
???ViewItemOverview_lblAbstractSection???
Adaptive dynamical networks are ubiquitous in real-world systems. This paper aims to explore the synchronization dynamics in networks of adaptive oscillators based on a paradigmatic system of adaptively coupled phase oscillators. Our numerical observations reveal the emergence of synchronization cluster bursting, characterized by periodic transitions between cluster synchronization and global synchronization. By investigating a reduced model, the mechanisms underlying synchronization cluster bursting are clarified. We show that a minimal model exhibiting this phenomenon can be reduced to a phase oscillator with complex-valued adaptation. Furthermore, the adaptivity of the system leads to the appearance of additional symmetries, and thus, to the coexistence of stable bursting solutions with very different Kuramoto order parameters.