English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Multilevel emission impacts of electrification and coal pathways in China’s net-zero transition

Authors
/persons/resource/Chen.Gong

Gong,  Chen Chris
Potsdam Institute for Climate Impact Research;
Submitting Corresponding Author, Potsdam Institute for Climate Impact Research;

/persons/resource/Falko.Ueckerdt

Ueckerdt,  Falko
Potsdam Institute for Climate Impact Research;

Bertram,  Christoph
External Organizations;

Yin,  Yuxin
External Organizations;

/persons/resource/David.Bantje

Bantje,  David
Potsdam Institute for Climate Impact Research;

/persons/resource/Robert.Pietzcker

Pietzcker,  Robert C.
Potsdam Institute for Climate Impact Research;

/persons/resource/Johanna.Hoppe

Hoppe,  Johanna
Potsdam Institute for Climate Impact Research;

/persons/resource/robin.krekeler

Hasse,  Robin
Potsdam Institute for Climate Impact Research;

/persons/resource/michaja.pehl

Pehl,  Michaja
Potsdam Institute for Climate Impact Research;

/persons/resource/Moreno.Leiva

Moreno Leiva,  Simon
Potsdam Institute for Climate Impact Research;

/persons/resource/jakob.duerrwaechter

Dürrwächter,  Jakob
Potsdam Institute for Climate Impact Research;

/persons/resource/jarusch.muessel

Müßel,  Jarusch
Potsdam Institute for Climate Impact Research;

/persons/resource/Gunnar.Luderer

Luderer,  Gunnar
Potsdam Institute for Climate Impact Research;

External Ressource
No external resources are shared
Fulltext (public)

1-s2.0-S2542435125001266-main.pdf
(Publisher version), 3MB

Supplementary Material (public)

1-s2.0-S2542435125001266-mmc1.pdf
(Supplementary material), 4MB

1-s2.0-S2542435125001266-mmc2.pdf
(Supplementary material), 9MB

Citation

Gong, C. C., Ueckerdt, F., Bertram, C., Yin, Y., Bantje, D., Pietzcker, R. C., Hoppe, J., Hasse, R., Pehl, M., Moreno Leiva, S., Dürrwächter, J., Müßel, J., Luderer, G. (2025 online): Multilevel emission impacts of electrification and coal pathways in China’s net-zero transition. - Joule, 101945.
https://doi.org/10.1016/j.joule.2025.101945


Cite as: https://publications.pik-potsdam.de/pubman/item/item_32368
Abstract
Decarbonizing China's energy system requires both greening the power supply and electrifying end-use sectors. However, concerns exist that electrification may increase emissions while coal power dominates. Using a global climate model, we explore electrification scenarios with varying coal phase-out timelines and assess their climate impact on China’s sectors. A 10-year delay in coal phase-out could increase global peak temperature by about 0.02°C. However, on a sectoral level, there is no evidence of significant additional emissions from electrification, even with a slower coal phase-out. This challenges the sequential “order of abatement” view, showing electrification can start before the power sector is fully decarbonized. As long as power emission intensity drops below 150 gCO2/kWh by 2040, electrification can substantially reduce the carbon footprint of buildings, steel, and transport services, and along with energy-efficiency measures, it can avoid approximately 0.035°C of additional global warming by 2060.