Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Crop models for future food systems

Urheber*innen

de Souza Noia Junior,  Rogerio
External Organizations;

Ruane,  Alex C.
External Organizations;

Athanasiadis,  Ioannis N.
External Organizations;

Ewert,  Frank
External Organizations;

Harrison,  Matthew Tom
External Organizations;

/persons/resource/jonasjae

Jägermeyr,  Jonas       
Potsdam Institute for Climate Impact Research;

Martre,  Pierre
External Organizations;

/persons/resource/Christoph.Mueller

Müller,  Christoph       
Potsdam Institute for Climate Impact Research;

Palosuo,  Taru
External Organizations;

Salmerón,  Montserrat
External Organizations;

Webber,  Heidi
External Organizations;

Sefakor Maccarthy,  Dilys
External Organizations;

Asseng,  Senthold
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

de Souza Noia Junior, R., Ruane, A. C., Athanasiadis, I. N., Ewert, F., Harrison, M. T., Jägermeyr, J., Martre, P., Müller, C., Palosuo, T., Salmerón, M., Webber, H., Sefakor Maccarthy, D., Asseng, S. (2025): Crop models for future food systems. - One Earth, 8, 10, 101487.
https://doi.org/10.1016/j.oneear.2025.101487


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_32791
Zusammenfassung
Global food systems face intensifying pressure from climate change, resource scarcity, and rising demand, making their transformation toward resilience and sustainability urgent. Process-based crop growth models (CMs) are critical for understanding cropping system dynamics and supporting decisions from crop breeding to adaptive management across diverse environments. Yet, current CMs struggle to capture extreme events, novel production systems, and rapidly evolving data streams, limiting their ability to inform robust and timely decisions. Here, we outline CM structure, identify key knowledge gaps, and propose six priorities for next-generation CMs: (1) expand applications to extremes and to diverse systems; (2) support climate-resilient breeding; (3) integrate with machine learning for better inputs and forecasts; (4) link with standardized sensor and database networks; (5) promote modular, open-source architectures; and (6) build capacity in under-resourced regions. These priorities will substantially enhance CM robustness, comparability, and usability, reinforcing their role in guiding sustainable food system transformation.