Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Balancing trade-offs between ecosystem services in Germany's forests under climate change

Urheber*innen
/persons/resource/Martin.Gutsch

Gutsch,  Martin
Potsdam Institute for Climate Impact Research;

/persons/resource/Petra.Lasch

Lasch-Born,  Petra
Potsdam Institute for Climate Impact Research;

/persons/resource/kollas

Kollas,  Chris
Potsdam Institute for Climate Impact Research;

/persons/resource/Felicitas.Suckow

Suckow,  Felicitas
Potsdam Institute for Climate Impact Research;

/persons/resource/Reyer

Reyer,  Christopher P. O.
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

7939oa.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gutsch, M., Lasch-Born, P., Kollas, C., Suckow, F., Reyer, C. P. O. (2018): Balancing trade-offs between ecosystem services in Germany's forests under climate change. - Environmental Research Letters, 13, 4, 045012.
https://doi.org/10.1088/1748-9326/aab4e5


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_22198
Zusammenfassung
Germany's forests provide a variety of ecosystem services. Sustainable forest management aims to optimize the provision of these services at regional level. However, climate change will impact forest ecosystems and subsequently ecosystem services. The objective of this study is to quantify the effects of two alternative management scenarios and climate impacts on forest variables indicative of ecosystem services related to timber, habitat, water, and carbon. The ecosystem services are represented through nine model output variables (timber harvest, above and belowground biomass, net ecosystem production, soil carbon, percolation, nitrogen leaching, deadwood, tree dimension, broadleaf tree proportion) from the process-based forest model 4C. We simulated forest growth, carbon and water cycling until 2045 with 4C set-up for the whole German forest area based on National Forest Inventory data and driven by three management strategies (nature protection, biomass production and a baseline management) and an ensemble of regional climate scenarios (RCP2.6, RCP 4.5, RCP 8.5). We provide results as relative changes compared to the baseline management and observed climate. Forest management measures have the strongest effects on ecosystem services inducing positive or negative changes of up to 40% depending on the ecosystem service in question, whereas climate change only slightly alters ecosystem services averaged over the whole forest area. The ecosystem services 'carbon' and 'timber' benefit from climate change, while 'water' and 'habitat' lose. We detect clear trade-offs between 'timber' and all other ecosystem services, as well as synergies between 'habitat' and 'carbon'. When evaluating all ecosystem services simultaneously, our results reveal certain interrelations between climate and management scenarios. North-eastern and western forest regions are more suitable to provide timber (while minimizing the negative impacts on remaining ecosystem services) whereas southern and central forest regions are more suitable to fulfil 'habitat' and 'carbon' services. The results provide the base for future forest management optimizations at the regional scale in order to maximize ecosystem services and forest ecosystem sustainability at the national scale.