Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Suppression of anomalous synchronization and nonstationary behavior of neural network under small-world topology

Urheber*innen

Boaretto,  B. R. R.
External Organizations;

Budzinski,  R. C.
External Organizations;

Prado,  T. L.
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

/persons/resource/lopes.sergio

Lopes,  Sergio Roberto
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Boaretto, B. R. R., Budzinski, R. C., Prado, T. L., Kurths, J., Lopes, S. R. (2018): Suppression of anomalous synchronization and nonstationary behavior of neural network under small-world topology. - Physica A-Statistical Mechanics and its Applications, 497, 126-138.
https://doi.org/10.1016/j.physa.2017.12.053


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_22684
Zusammenfassung
It is known that neural networks under small-world topology can present anomalous synchronization and nonstationary behavior for weak coupling regimes. Here, we propose methods to suppress the anomalous synchronization and also to diminish the nonstationary behavior occurring in weakly coupled neural network under small-world topology. We consider a network of 2000 thermally sensitive identical neurons, based on the model of Hodgkin–Huxley in a small-world topology, with the probability of adding non local connection equal to . Based on experimental protocols to suppress anomalous synchronization, as well as nonstationary behavior of the neural network dynamics, we make use of (i) external stimulus (pulsed current); (ii) biologic parameters changing (neuron membrane conductance changes); and (iii) body temperature changes. Quantification analysis to evaluate phase synchronization makes use of the Kuramoto’s order parameter, while recurrence quantification analysis, particularly the determinism, computed over the easily accessible mean field of network, the local field potential (LFP), is used to evaluate nonstationary states. We show that the methods proposed can control the anomalous synchronization and nonstationarity occurring for weak coupling parameter without any effect on the individual neuron dynamics, neither in the expected asymptotic synchronized states occurring for large values of the coupling parameter.