Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale

Urheber*innen

Li,  W.
External Organizations;

Ciais,  P.
External Organizations;

Stehfest,  E.
External Organizations;

Vuuren,  D. P. van
External Organizations;

/persons/resource/Alexander.Popp

Popp,  Alexander
Potsdam Institute for Climate Impact Research;

Arneth,  A.
External Organizations;

Di Fulvio,  F.
External Organizations;

Doelman,  J.
External Organizations;

/persons/resource/Florian.Humpenoeder

Humpenöder,  Florian
Potsdam Institute for Climate Impact Research;

Harper,  A.
External Organizations;

Park,  T.
External Organizations;

Makowski,  D.
External Organizations;

Havlik,  P.
External Organizations;

Obersteiner,  M.
External Organizations;

Wang,  J.
External Organizations;

Krause,  A.
External Organizations;

Liu,  W.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

23494oa.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Li, W., Ciais, P., Stehfest, E., Vuuren, D. P. v., Popp, A., Arneth, A., Di Fulvio, F., Doelman, J., Humpenöder, F., Harper, A., Park, T., Makowski, D., Havlik, P., Obersteiner, M., Wang, J., Krause, A., Liu, W. (2020): Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale. - Earth System Science Data, 12, 2, 789-804.
https://doi.org/10.5194/essd-2019-118


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_23494
Zusammenfassung
Most scenarios from integrated assessment models (IAMs) that project greenhouse gas emissions include the use of bioenergy as a means to reduce CO2 emissions or even to achieve negative emissions (together with CCS – carbon capture and storage). The potential amount of CO2 that can be removed from the atmosphere depends, among others, on the yields of bioenergy crops, the land available to grow these crops and the efficiency with which CO2 produced by combustion is captured. While bioenergy crop yields can be simulated by models, estimates of the spatial distribution of bioenergy yields under current technology based on a large number of observations are currently lacking. In this study, a random-forest (RF) algorithm is used to upscale a bioenergy yield dataset of 3963 observations covering Miscanthus, switchgrass, eucalypt, poplar and willow using climatic and soil conditions as explanatory variables. The results are global yield maps of five important lignocellulosic bioenergy crops under current technology, climate and atmospheric CO2 conditions at a 0.5∘×0.5∘ spatial resolution. We also provide a combined “best bioenergy crop” yield map by selecting one of the five crop types with the highest yield in each of the grid cells, eucalypt and Miscanthus in most cases. The global median yield of the best crop is 16.3 t DM ha−1 yr−1 (DM – dry matter). High yields mainly occur in the Amazon region and southeastern Asia. We further compare our empirically derived maps with yield maps used in three IAMs and find that the median yields in our maps are > 50 % higher than those in the IAM maps. Our estimates of gridded bioenergy crop yields can be used to provide bioenergy yields for IAMs, to evaluate land surface models or to identify the most suitable lands for future bioenergy crop plantations. The 0.5∘×0.5∘ global maps for yields of different bioenergy crops and the best crop and for the best crop composition generated from this study can be download from https://doi.org/10.5281/zenodo.3274254 (Li, 2019).