Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Stochastic properties of the frequency dynamics in real and synthetic power grids

Urheber*innen
/persons/resource/Mehrnaz.Anvari

Anvari,  Mehrnaz
Potsdam Institute for Climate Impact Research;

Rydin Gorjão,  L.
External Organizations;

Timme,  M.
External Organizations;

Witthaut,  D.
External Organizations;

Schäfer,  B.
External Organizations;

Kantz,  H.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

8806oa.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Anvari, M., Rydin Gorjão, L., Timme, M., Witthaut, D., Schäfer, B., Kantz, H. (2020): Stochastic properties of the frequency dynamics in real and synthetic power grids. - Physical Review Research, 2, 1, 013339.
https://doi.org/10.1103/PhysRevResearch.2.013339


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_23646
Zusammenfassung
The frequency constitutes a key state variable of electrical power grids. However, as the frequency is subject to several sources of fluctuations, ranging from renewable volatility to demand fluctuations and dispatch, it is strongly dynamic. Yet, the statistical and stochastic properties of the frequency fluctuation dynamics are far from fully understood. Here we analyze properties of power-grid frequency trajectories recorded from different synchronous regions. We highlight the non-Gaussian and still approximately Markovian nature of the frequency statistics. Furthermore, we find that the frequency displays significant fluctuations exactly at the time intervals of regulation and trading, confirming the need of having a regulatory and market design that respects the technical and dynamical constraints in future highly renewable power grids. Finally, employing a recently proposed synthetic model for the frequency dynamics, we combine our statistical and stochastic analysis and analyze in how far dynamically modeled frequency properties match the ones of real trajectories.