日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

S2S reboot: An argument for greater inclusion of machine learning in subseasonal to seasonal forecasts

Authors

Cohen,  J.
Potsdam Institute for Climate Impact Research and Cooperation Partners;

/persons/resource/coumou

Coumou,  Dim
Potsdam Institute for Climate Impact Research;

Hwang,  J.
Potsdam Institute for Climate Impact Research and Cooperation Partners;

Mackey,  L.
Potsdam Institute for Climate Impact Research and Cooperation Partners;

Orenstein,  P.
Potsdam Institute for Climate Impact Research and Cooperation Partners;

Totz,  S.
Potsdam Institute for Climate Impact Research and Cooperation Partners;

Tziperman,  E.
Potsdam Institute for Climate Impact Research and Cooperation Partners;

URL
There are no locators available
フルテキスト (公開)

8864oa.pdf
(全文テキスト(全般)), 5MB

付随資料 (公開)
There is no public supplementary material available
引用

Cohen, J., Coumou, D., Hwang, J., Mackey, L., Orenstein, P., Totz, S., & Tziperman, E. (2019). S2S reboot: An argument for greater inclusion of machine learning in subseasonal to seasonal forecasts. Wiley Interdisciplinary Reviews: Climate Change, 10(2, Art. e00567). doi:10.1002/wcc.567.


引用: https://publications.pik-potsdam.de/pubman/item/item_23751
要旨
要旨はありません