English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Climatic fluctuations modeled for carbon and sulfur emissions from end-Triassic volcanism

Authors
/persons/resource/jan.landwehrs

Landwehrs,  Jan Philip
Potsdam Institute for Climate Impact Research;

/persons/resource/Georg.Feulner

Feulner,  Georg
Potsdam Institute for Climate Impact Research;

/persons/resource/matthias.hofmann

Hofmann,  Matthias
Potsdam Institute for Climate Impact Research;

/persons/resource/petri

Petri,  Stefan
Potsdam Institute for Climate Impact Research;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PIKpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Landwehrs, J. P., Feulner, G., Hofmann, M., Petri, S. (2020): Climatic fluctuations modeled for carbon and sulfur emissions from end-Triassic volcanism. - Earth and Planetary Science Letters, 537, 116174.
https://doi.org/10.1016/j.epsl.2020.116174


Cite as: https://publications.pik-potsdam.de/pubman/item/item_23913
Abstract
Throughout the history of complex life, Earth's climate and biogeochemical cycles have been perturbed by Large Igneous Province (LIP) volcanism, with several LIP episodes correlating with major mass extinction events. Yet many aspects of the interplay between geological, climatic and ecological processes in the Earth System during these times of global upheaval remain poorly understood. This study focuses on the Central Atlantic Magmatic Province and the associated extinction event in the latest Triassic, about 201 million years ago. Although climate and carbon cycle models successfully reproduce aspects of the end-Triassic environmental changes, many questions regarding the causal and temporal relations behind them remain unresolved. Here, we report an effort to model and quantify the dynamic response of the Earth System to short pulses of volcanogenic volatile emissions for an ensemble of emission scenarios. For the first time in the context of the end-Triassic events, this is done with a coupled climate model and under consideration of both carbon and sulfur emissions. Tested are pulses with ∼1−6 kyr duration during which 2500 - 7500 GtC are emitted and 0 - 500 GtS form stratospheric sulfate aerosols. The simultaneous emission of carbon and sulfur during one pulse of volcanic activity causes climatic fluctuations on annual to millennial timescales: A sequence of transient global cooling and subsequent sustained warming, overprinted with high interannual variability. The simulated maximum global warming ranges from +1.8 to +4.4 °C, while the amplitude of cooling is considerably higher in the upper range of the tested sulfur emission scenarios. The magnitude of temperature change varies regionally, being lowest in the Tethys realm. Changes in steric sea level (∼1−3 m) and ocean overturning strength, a surface ocean pH decrease (∼0.2−0.4) and a drop of the carbonate saturation especially in the Tethys are also obtained from the simulations during each emission pulse. By evaluating the simulated temperature changes against thermal tolerance limits of stony corals in a simplified manner, we find that these are not clearly transgressed on a global scale in the simulated warming scenarios. However, the climatic variability potentially introduced by the volcanic forcing would have represented significant stress for marine organisms. This study represents a significant step towards integrating multiple volcanic forcing mechanisms and environmental response processes in space and time to yield a more complete picture of impacts of CAMP volcanism and LIPs in general.