Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Extending transition path theory: Periodically driven and finite-time dynamics

Urheber*innen
/persons/resource/helfmann.luzie

Helfmann,  Luzie
Potsdam Institute for Climate Impact Research;

Ribera Borrell,  Enric
External Organizations;

Schütte,  Christof
External Organizations;

Koltai,  Péter
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

24541oa.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Helfmann, L., Ribera Borrell, E., Schütte, C., Koltai, P. (2020): Extending transition path theory: Periodically driven and finite-time dynamics. - Journal of Nonlinear Science, 30, 6, 3321-3366.
https://doi.org/10.1007/s00332-020-09652-7


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_24541
Zusammenfassung
Given two distinct subsets A, B in the state space of some dynamical system, transition
path theory (TPT) was successfully used to describe the statistical behavior of
transitions from A to B in the ergodic limit of the stationary system.We derive generalizations
of TPT that remove the requirements of stationarity and of the ergodic limit
and provide this powerful tool for the analysis of other dynamical scenarios: periodically
forced dynamics and time-dependent finite-time systems. This is partially
motivated by studying applications such as climate, ocean, and social dynamics. On
simple model examples, we show how the new tools are able to deliver quantitative
understanding about the statistical behavior of such systems.We also point out explicit
cases where the more general dynamical regimes show different behaviors to their stationary
counterparts, linking these tools directly to bifurcations in non-deterministic
systems.