Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Twisting-based finite-time consensus for Euler-Lagrange systems with an event-triggered strategy

Urheber*innen

Jin,  Xin
External Organizations;

Wei,  Du
External Organizations;

He,  Wangli
External Organizations;

Kocarev,  Ljupco
External Organizations;

Tang,  Yang
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jin, X., Wei, D., He, W., Kocarev, L., Tang, Y., Kurths, J. (2020): Twisting-based finite-time consensus for Euler-Lagrange systems with an event-triggered strategy. - IEEE Transactions on Network Science and Engineering, 7, 3, 1007-1018.
https://doi.org/10.1109/TNSE.2019.2900264


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_24716
Zusammenfassung
In this paper, a twisting-based consensus algorithm is put forward to deal with the event-triggered finite-time consensus for networked Lagrangian systems with directed graphs. First, a fully distributed event-triggered finite-time protocol is considered, for which we can show that each agent can achieve the consensus after a settling time. In order to remove the requirement of continuous monitoring, a pull-based triggering mechanism is employed. Simultaneously, the Zeno-behavior can be excluded under a finite-time dynamic condition. Then, due to the advantages of non-chattering behaviors and finite-time convergence, a twisting-based consensus algorithm based on homogeneous techniques is developed to drive the Euler-Lagrange systems to the consensus value in a settling time. By means of Pólya's theorem and Sum of Squares tools, a polynomial Lyapunov function is constructed to verify our criteria. At last, we give a numerical example for 2-DOF prototype manipulators to verify the validity of the theoretical results.