English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Impact of the melt–albedo feedback on the future evolution of the Greenland Ice Sheet with PISM-dEBM-simple

Authors
/persons/resource/zeitz

Zeitz,  Maria
Potsdam Institute for Climate Impact Research;

/persons/resource/Ronja.Reese

Reese,  Ronja
Potsdam Institute for Climate Impact Research;

/persons/resource/Johanna.Beckmann

Beckmann,  Johanna
Potsdam Institute for Climate Impact Research;

Krebs-Kanzow,  Uta
External Organizations;

/persons/resource/Ricarda.Winkelmann

Winkelmann,  Ricarda
Potsdam Institute for Climate Impact Research;

External Ressource
No external resources are shared
Fulltext (public)

26432oa.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Zeitz, M., Reese, R., Beckmann, J., Krebs-Kanzow, U., Winkelmann, R. (2021): Impact of the melt–albedo feedback on the future evolution of the Greenland Ice Sheet with PISM-dEBM-simple. - The Cryosphere, 15, 12, 5739-5764.
https://doi.org/10.5194/tc-15-5739-2021


Cite as: https://publications.pik-potsdam.de/pubman/item/item_26432
Abstract
Surface melting of the Greenland Ice Sheet contributes a large amount to current and future sea level rise. Increased surface melt may lower the reflectivity of the ice sheet surface and thereby increase melt rates: the so-called melt–albedo feedback describes this self-sustaining increase in surface melting. In order to test the effect of the melt– albedo feedback in a prognostic ice sheet model, we imple- ment dEBM-simple, a simplified version of the diurnal En- ergy Balance Model dEBM, in the Parallel Ice Sheet Model (PISM). The implementation includes a simple representation of the melt–albedo feedback and can thereby replace the positive-degree-day melt scheme. Using PISM-dEBM- simple, we find that this feedback increases ice loss through surface warming by 60 % until 2300 for the high-emission scenario RCP8.5 when compared to a scenario in which the albedo remains constant at its present-day values. With an increase of 90 % compared to a fixed-albedo scenario, the effect is more pronounced for lower surface warming under RCP2.6. Furthermore, assuming an immediate darkening of the ice surface over all summer months, we estimate an up- per bound for this effect to be 70 % in the RCP8.5 scenario and a more than 4-fold increase under RCP2.6. With dEBM- simple implemented in PISM, we find that the melt–albedo feedback is an essential contributor to mass loss in dynamic simulations of the Greenland Ice Sheet under future warming.