日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Integrated assessment model diagnostics: key indicators and model evolution

Authors

Harmsen,  Mathijs
External Organizations;

/persons/resource/Elmar.Kriegler

Kriegler,  Elmar
Potsdam Institute for Climate Impact Research;

van Vuuren,  Detlef P.
External Organizations;

van der Wijst,  Kaj-Ivar
External Organizations;

/persons/resource/Gunnar.Luderer

Luderer,  Gunnar
Potsdam Institute for Climate Impact Research;

Cui,  Ryna
External Organizations;

Dessens,  Olivier
External Organizations;

Drouet,  Laurent
External Organizations;

Emmerling,  Johannes
External Organizations;

Morris,  Jennifer Faye
External Organizations;

Fosse,  Florian
External Organizations;

Fragkiadakis,  Dimitris
External Organizations;

Fragkiadakis,  Kostas
External Organizations;

Fragkos,  Panagiotis
External Organizations;

Fricko,  Oliver
External Organizations;

Fujimori,  Shinichiro
External Organizations;

Gernaat,  David
External Organizations;

Guivarch,  Céline
External Organizations;

Iyer,  Gokul
External Organizations;

Karkatsoulis,  Panagiotis
External Organizations;

Keppo,  Ilkka
External Organizations;

Keramidas,  Kimon
External Organizations;

Köberle,  Alexandre
External Organizations;

Kolp,  Peter
External Organizations;

Krey,  Volker
External Organizations;

Krüger,  Christoph
External Organizations;

Leblanc,  Florian
External Organizations;

Mittal,  Shivika
External Organizations;

Paltsev,  Sergey
External Organizations;

Rochedo,  Pedro
External Organizations;

van Ruijven,  Bas J.
External Organizations;

Sands,  Ronald D.
External Organizations;

Sano,  Fuminori
External Organizations;

/persons/resource/Jessica.Strefler

Strefler,  Jessica
Potsdam Institute for Climate Impact Research;

Arroyo,  Eveline Vasquez
External Organizations;

Wada,  Kenichi
External Organizations;

Zakeri,  Behnam
External Organizations;

URL
There are no locators available
フルテキスト (公開)
付随資料 (公開)
There is no public supplementary material available
引用

Harmsen, M., Kriegler, E., van Vuuren, D. P., van der Wijst, K.-I., Luderer, G., Cui, R., Dessens, O., Drouet, L., Emmerling, J., Morris, J. F., Fosse, F., Fragkiadakis, D., Fragkiadakis, K., Fragkos, P., Fricko, O., Fujimori, S., Gernaat, D., Guivarch, C., Iyer, G., Karkatsoulis, P., Keppo, I., Keramidas, K., Köberle, A., Kolp, P., Krey, V., Krüger, C., Leblanc, F., Mittal, S., Paltsev, S., Rochedo, P., van Ruijven, B. J., Sands, R. D., Sano, F., Strefler, J., Arroyo, E. V., Wada, K., & Zakeri, B. (2021). Integrated assessment model diagnostics: key indicators and model evolution. Environmental Research Letters, 16(5):. doi:10.1088/1748-9326/abf964.


引用: https://publications.pik-potsdam.de/pubman/item/item_26438
要旨
Integrated assessment models (IAMs) form a prime tool in informing about climate mitigation strategies. Diagnostic indicators that allow comparison across these models can help describe and explain differences in model projections. This increases transparency and comparability. Earlier, the IAM community has developed an approach to diagnose models (Kriegler (2015 Technol. Forecast. Soc. Change 90 45–61)). Here we build on this, by proposing a selected set of well-defined indicators as a community standard, to systematically and routinely assess IAM behaviour, similar to metrics used for other modeling communities such as climate models. These indicators are the relative abatement index, emission reduction type index, inertia timescale, fossil fuel reduction, transformation index and cost per abatement value. We apply the approach to 17 IAMs, assessing both older as well as their latest versions, as applied in the IPCC 6th Assessment Report. The study shows that the approach can be easily applied and used to indentify key differences between models and model versions. Moreover, we demonstrate that this comparison helps to link model behavior to model characteristics and assumptions. We show that together, the set of six indicators can provide useful indication of the main traits of the model and can roughly indicate the general model behavior. The results also show that there is often a considerable spread across the models. Interestingly, the diagnostic values often change for different model versions, but there does not seem to be a distinct trend.