Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Characterizing dynamical transitions by statistical complexity measures based on ordinal pattern transition networks

Urheber*innen

Huang,  Min
External Organizations;

Sun,  Zhongkui
External Organizations;

/persons/resource/Reik.Donner

Donner,  Reik V.
Potsdam Institute for Climate Impact Research;

Zhang,  Jie
External Organizations;

Guan,  Shuguang
External Organizations;

Zou,  Yong
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Huang, M., Sun, Z., Donner, R. V., Zhang, J., Guan, S., Zou, Y. (2021): Characterizing dynamical transitions by statistical complexity measures based on ordinal pattern transition networks. - Chaos, 31, 3, 033127.
https://doi.org/10.1063/5.0038876


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_26674
Zusammenfassung
Complex network approaches have been recently emerging as novel and complementary concepts of nonlinear time series analysis that are able to unveil many features that are hidden to more traditional analysis methods. In this work, we focus on one particular approach: the application of ordinal pattern transition networks for characterizing time series data. More specifically, we generalize a traditional statistical complexity measure (SCM) based on permutation entropy by explicitly disclosing heterogeneous frequencies of ordinal pattern transitions. To demonstrate the usefulness of these generalized SCMs, we employ them to characterize different dynamical transitions in the logistic map as a paradigmatic model system, as well as real-world time series of fluid experiments and electrocardiogram recordings. The obtained results for both artificial and experimental data demonstrate that the consideration of transition frequencies between different ordinal patterns leads to dynamically meaningful estimates of SCMs, which provide prospective tools for the analysis of observational time series. In the past decade, the field of nonlinear time series analysis has been undergoing fast developments benefiting from concepts from complex network theory. Along this line of research, ordinal pattern transition networks have been expanding the established concept of ordinal time series analysis and provide new insights into the dynamical organization underlying time series data that complement existing methods like permutation entropy. Permutation based on ordinal patterns is a simple and easy to implement concept that naturally provides statistical complexity measures (SCMs), which in the case of permutation entropy relies on pattern frequencies only. Yet, much additional information can be exploited by including ordinal pattern transition frequencies into the definitions of SCMs—an idea that, however, has not been widely developed and applied so far. In this work, we generalize existing permutation based SCMs by means of ordinal pattern transition networks that take into account the pattern transition properties explicitly. The usefulness of our generalizations is demonstrated by using time series of both model and experimental data