日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Extreme rainfall reduces one-twelfth of China’s rice yield over the last two decades

Authors

Fu,  Jin
External Organizations;

Jian,  Yiwei
External Organizations;

Wang,  Xuhui
External Organizations;

Li,  Laurent
External Organizations;

Ciais,  Philippe
External Organizations;

Zscheischler,  Jakob
External Organizations;

Wang,  Yin
External Organizations;

Tang,  Yanhong
External Organizations;

/persons/resource/Christoph.Mueller

Müller,  Christoph
Potsdam Institute for Climate Impact Research;

Webber,  Heidi
External Organizations;

Yang,  Bo
External Organizations;

Wang,  Qihui
External Organizations;

Cui,  Xiaoqing
External Organizations;

Huang,  Weichen
External Organizations;

Liu,  Yongqiang
External Organizations;

Zhao,  Pengjun
External Organizations;

Piao,  Shilong
External Organizations;

Zhou,  Feng
External Organizations;

URL
There are no locators available
フルテキスト (公開)

28309oa.pdf
(ポストプリント), 10MB

付随資料 (公開)
There is no public supplementary material available
引用

Fu, J., Jian, Y., Wang, X., Li, L., Ciais, P., Zscheischler, J., Wang, Y., Tang, Y., Müller, C., Webber, H., Yang, B., Wang, Q., Cui, X., Huang, W., Liu, Y., Zhao, P., Piao, S., & Zhou, F. (2023). Extreme rainfall reduces one-twelfth of China’s rice yield over the last two decades. Nature Food, 4, 416-426. doi:10.1038/s43016-023-00753-6.


引用: https://publications.pik-potsdam.de/pubman/item/item_28309
要旨
Extreme climate events constitute a major risk to global food production. Among these, extreme rainfall is often dismissed from historical analyses and future projections, the impacts and mechanisms of which remain poorly understood. Here we used long-term nationwide observations and multi-level rainfall manipulative experiments to explore the magnitude and mechanisms of extreme rainfall impacts on rice yield in China. We find that rice yield reductions due to extreme rainfall were comparable to those induced by extreme heat over the last two decades, reaching 7.6 ± 0.9% (one standard error) according to nationwide observations and 8.1 ± 1.1% according to the crop model incorporating the mechanisms revealed from manipulative experiments. Extreme rainfall reduces rice yield mainly by limiting nitrogen availability for tillering that lowers per-area effective panicles and by exerting physical disturbance on pollination that declines per-panicle filled grains. Considering these mechanisms, we projected ~8% additional yield reduction due to extreme rainfall under warmer climate by the end of the century. These findings demonstrate that it is critical to account for extreme rainfall in food security assessments.