Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Propagation pathways of Indo-Pacific rainfall extremes are modulated by Pacific sea surface temperatures

Urheber*innen

Strnad,  Felix
External Organizations;

Schlör,  Jakob
External Organizations;

Geen,  Ruth
External Organizations;

/persons/resource/Niklas.Boers

Boers,  Niklas
Potsdam Institute for Climate Impact Research;

Goswami,  Bedartha
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

28721oa.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Strnad, F., Schlör, J., Geen, R., Boers, N., Goswami, B. (2023): Propagation pathways of Indo-Pacific rainfall extremes are modulated by Pacific sea surface temperatures. - Nature Communications, 14, 5708.
https://doi.org/10.1038/s41467-023-41400-9


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_28721
Zusammenfassung
Intraseasonal variation of rainfall extremes within boreal summer in the Indo-Pacific region is driven by the Boreal Summer Intraseasonal Oscillation (BSISO), a quasi-periodic north-eastward movement of convective precipitation from the Indian Ocean to the Western Pacific. Predicting the spatiotemporal location of the BSISO is essential for subseasonal prediction of rainfall extremes but still remains a major challenge due to insufficient understanding of its propagation pathway. Here, using unsupervised machine learning, we characterize how rainfall extremes travel within the region and reveal three distinct propagation modes: north-eastward, eastward-blocked, and quasi-stationary. We show that Pacific sea surface temperatures modulate BSISO propagation — with El Niño-like (La Niña-like) conditions favoring quasi-stationary (eastward-blocked) modes—by changing the background moist static energy via local overturning circulations. Finally, we demonstrate the potential for early warning of rainfall extremes in the region up to four weeks in advance.