English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Noise-induced stochastic switching of microcargoes transport in artificial microtubule

Authors

Zheng,  Xinwei
External Organizations;

Li,  Yongge
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Xu,  Yong
External Organizations;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PIKpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Zheng, X., Li, Y., Kurths, J., Xu, Y. (2024): Noise-induced stochastic switching of microcargoes transport in artificial microtubule. - Chaos, 34, 9, 091101.
https://doi.org/10.1063/5.0226188


Cite as: https://publications.pik-potsdam.de/pubman/item/item_30667
Abstract
Synchronization plays an important role in propelling microrobots, especially for those driven by an external magnetic field. Here, we substantially contribute to the understanding of a novel out-of-sync phenomenon called “slip-out”, which has been recently discovered in experiments of an artificial microtubule (AMT). In a deterministic situation, we interpret and quantitatively characterize the switching in such a system between the stick and slip modes, whose different combinations over time define four long-term states. The stick-and-slip state is the most typical “slip-out” state with periodic switching, caused by both the phase lock between the microrod and the magnetic field, and the time-dependent magnetic moment. We then illustrate that thermal noise leads to stochastic switching by stimulating the phase difference across a specific threshold randomly. Finally, we reproduce the average velocity simulatively, which is highly consistent with real experiments. Importantly, the nearly permanent slip state is probed by our analysis of long-term states rather than observing real experiments. The investigation supports the design and operational strategies of AMT and other microrobots driven by magnetic fields.