Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Globally Exponential Synchronization of Delayed Complex Dynamic Networks With Average Impulsive Delay‐Gain

Urheber*innen

Gao,  Kangping
External Organizations;

Wang,  Yishu
External Organizations;

Lu,  Jianquan
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gao, K., Wang, Y., Lu, J., Kurths, J. (2024 online): Globally Exponential Synchronization of Delayed Complex Dynamic Networks With Average Impulsive Delay‐Gain. - International Journal of Robust and Nonlinear Control.
https://doi.org/10.1002/rnc.7753


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_31461
Zusammenfassung
In this article, we investigate globally exponential synchronization problems in delayed complex dynamic networks (DCDNs) characterized by both time-varying impulsive delay and gain (TIDG). Our research is grounded on the Halanay inequality, which serves as the keystone of our analysis. Adopting the method of average impulsive delay-gain (AIDG), we formulate criteria for globally exponential synchronization dependent on the overall impulsive disturbances. Our criteria reveal the negative effect of AIDG on synchronization, which hinders the synchronization process. Additionally, we refine the concept of average impulsive gain to enhance its applicability. Furthermore, our results demonstrate that even in the simultaneous presence of desynchronizing and synchronizing impulses, along with time-varying impulsive delays, DCDNs are able to maintain the original synchronization under appropriate conditions, irrespective of whether the average impulsive interval is finite or not. Finally, we validate our theoretical findings by applying them to network examples.