Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Marine species and assemblage change foreshadowed by their thermal bias over Early Jurassic warming

Urheber*innen

Reddin,  Carl
External Organizations;

/persons/resource/jan.landwehrs

Landwehrs,  Jan Philip
Potsdam Institute for Climate Impact Research;

Mathes,  Gregor H.
External Organizations;

Ullmann,  Clemens V.
External Organizations;

/persons/resource/Georg.Feulner

Feulner,  Georg
Potsdam Institute for Climate Impact Research;

Aberhan,  Martin
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

31808oa.pdf
(Verlagsversion), 1024KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Reddin, C., Landwehrs, J. P., Mathes, G. H., Ullmann, C. V., Feulner, G., Aberhan, M. (2025): Marine species and assemblage change foreshadowed by their thermal bias over Early Jurassic warming. - Nature Communications, 16, 1370.
https://doi.org/10.1038/s41467-025-56589-0


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_31808
Zusammenfassung
A mismatch of species’ thermal preferences to their environment may indicate how they will respond to future climate change. Averaging this mismatch across species may forewarn that some assemblages will undergo greater reorganization, extirpation, and possibly extinction, than others. Here, we examine how regional warming determines species occupancy and assemblage composition of marine bivalves, brachiopods, and gastropods over one-million-year time steps during the Early Jurassic. Thermal bias, the difference between modelled regional temperatures and species’ long-term thermal optima, predicts a gradient of species occupancy response to warming. Species that become extirpated or extinct tend to have cooler temperature preferences than immigrating species, while regionally persisting species fell midway. Larger regional changes in summer seawater temperatures (up to +10 °C) strengthen the relationship between species thermal bias and the response gradient, which is also stronger for brachiopods than for bivalves, while the relationship collapses during severe seawater deoxygenation. At +3 °C regional seawater warming, around 5 % of pre-existing benthic species in a regional assemblage are extirpated, and immigrating species comprise around one-fourth of the new assemblage. Our results validate thermal bias as an indicator of immigration, persistence, extirpation, and extinction of marine benthic species and assemblages under modern-like magnitudes of climate change.