Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Extreme events suppression in a suspended aircraft seat system under extreme environment

Urheber*innen
/persons/resource/dan.zhao

Zhao,  Dan
Potsdam Institute for Climate Impact Research;

Li,  Yongge
External Organizations;

Liu,  Qi
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Xu,  Yong
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zhao, D., Li, Y., Liu, Q., Kurths, J., Xu, Y. (2025 online): Extreme events suppression in a suspended aircraft seat system under extreme environment. - Communications in Nonlinear Science and Numerical Simulation, 145, 108707.
https://doi.org/10.1016/j.cnsns.2025.108707


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_32056
Zusammenfassung
In extreme flight environments, extreme oscillations may occur in aircraft seats, seriously endangering passengers’ comfort and safety. It is important to quantitatively study extreme events in the aircraft seats and control them. In this paper, a two-degree-of-freedom suspended seat is used to describe aircraft seats and a nonlinear energy sink (NES) is employed to suppress extreme events. The extreme flight environments are characterized by non-Gaussian Lévy noise. We discover extreme events by observing the system responses and the probability density functions. By investigating the relationship between seat and attachment and the effect of Lévy noise on extreme events, the quantification of extreme events is achieved. Furthermore, the mechanism by which NES fulfills extreme event suppression is explored. The mean first-passage time and the probability of extreme events are calculated, and the impacts of NES parameters on the performance of extreme events suppression are performed. The results indicate that, damping and linear stiffness coefficients help extreme events suppression. These findings contribute to improving the theoretical guidance for designing such systems.