Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Combined models of violent conflict and natural hazards improve predictions of household mobility in Bangladesh

Urheber*innen

Leis,  Maxine
External Organizations;

/persons/resource/kristina.petrova

Petrova,  Kristina       
Potsdam Institute for Climate Impact Research;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

s43247-025-03086-3_reference.pdf
(Verlagsversion), 339KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Leis, M., Petrova, K. (2025 online): Combined models of violent conflict and natural hazards improve predictions of household mobility in Bangladesh. - Communications Earth and Environment.
https://doi.org/10.1038/s43247-025-03086-3


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_33951
Zusammenfassung
In 2023, the United Nations High Commissioner for Refugees reported over 110 million displaced individuals globally, many in regions facing extreme weather and violence. Here we examine how these crises interact to shape household mobility in Bangladesh. Using data linking local conflict events, natural hazards, and household characteristics from 2011 to 2018, we apply machine learning models to capture complex, non-linear relationships between these risks. We find that combining conflict and hazard information improves predictions of household mobility. While exposure to violence or disasters increases mobility, households with remittances are more likely to move, whereas those with loans often remain. Interactions, such as between one-sided violence and landslides, further amplify movement, highlighting the importance of understanding how multiple stressors jointly influence household decisions.