日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  A systematic review of local to regional yield forecasting approaches and frequently used data resources

Schauberger, B., Jägermeyr, J., & Gornott, C. (2020). A systematic review of local to regional yield forecasting approaches and frequently used data resources. European Journal of Agronomy, 120:. doi:10.1016/j.eja.2020.126153.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
24342oa_ready.pdf (ポストプリント), 2MB
ファイル名:
24342oa_ready.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Schauberger, Bernhard1, 著者              
Jägermeyr, Jonas1, 著者              
Gornott, Christoph1, 著者              
所属:
1Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Forecasting crop yields, or providing an expectation of ex-ante harvest amounts, is highly relevant to the whole agricultural production chain. Farmers can adapt their management, traders or insurers their pricing schemes, suppliers their stocks, logistic companies their routes, national authorities their food balance sheets to guide import or export and, finally, international aid organizations can mobilize reliefs. Evidence has grown in the literature that such forecasts with a meaningful lead time are possible on various geographic scales and for a broad range of crops. Here, we present a systematic review of the methods applied in end-of-season yield forecasting and three frequently used data sources: weather data, satellite data and crop masks. Our literature database comprises 362 studies (2004 to 2019) which were evaluated regarding methods, crops, regions, data sources, lead time and performance. Moreover, we present 24 sources of real-time and predictive weather data, 21 sources of remote sensing data and 16 crop masks. Yield forecasting in our literature sample has been performed for 44 crops in 71 countries, also including many non-staple crops, but with an apparent bias in regions and crops. Forecasting performance depends on various factors, including crop, region, method, lead time to harvest and input diversity. Our systematic review supports a broader application of locally successful approaches at larger scales by providing a comprehensive, accessible compendium of necessary information for yield forecasting. We discuss improvement potentials with respect to methodological approaches and available data sources. We additionally suggest standardization procedures for future forecasting studies and encourage studying additional crops and geographic regions. Implications of forecasts for different target groups on different scales and the adaptation towards climate change are also discussed.

資料詳細

表示:
非表示:
言語:
 日付: 2020-08-022020-10-15
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): PIKDOMAIN: RD2 - Climate Resilience
Organisational keyword: RD2 - Climate Resilience
MDB-ID: yes - 2984
DOI: 10.1016/j.eja.2020.126153
Research topic keyword: Adaptation
Research topic keyword: Food & Agriculture
Research topic keyword: Weather
Regional keyword: Global
Model / method: Model Intercomparison
Working Group: Adaptation in Agricultural Systems
OATYPE: Green Open Access
Working Group: Land Use and Resilience
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: European Journal of Agronomy
種別: 学術雑誌, SCI, Scopus
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 120 通巻号: 126153 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): その他: Elsevier
その他: 1873-7331
ISSN: 1161-0301
CoNE: https://publications.pik-potsdam.de/cone/journals/resource/european-journal-of-agronomy
Publisher: Elsevier