Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Assessing effects of climate and technology uncertainties in large natural resource allocation problems

Steinbuks, J., Cai, Y., Jägermeyr, J., Hertel, T. W. (2024): Assessing effects of climate and technology uncertainties in large natural resource allocation problems. - Geoscientific Model Development, 17, 4791-4819.
https://doi.org/10.5194/gmd-17-4791-2024

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
gmd-17-4791-2024.pdf (Verlagsversion), 3MB
Name:
gmd-17-4791-2024.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Steinbuks, Jevgenijs1, Autor
Cai, Yongyang1, Autor
Jägermeyr, Jonas2, Autor              
Hertel, Thomas W.1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The productivity of the world's natural resources is critically dependent on a variety of highly uncertain factors, which obscure individual investors and governments that seek to make long-term, sometimes irreversible, investments in their exploration and utilization. These dynamic considerations are poorly represented in disaggregated resource models, as incorporating uncertainty into large-dimensional problems presents a challenging computational task. In this paper, we apply the SCEQ algorithm (Cai and Judd, 2023) to solve a large-scale dynamic stochastic global land resource use problem with stochastic crop yields due to adverse climate impacts and limits on further technological progress. For the same model parameters and bounded shocks, the range of land conversion is considerably smaller for the dynamic stochastic model than for deterministic scenario analysis.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2022-08-312024-02-092024-06-192024-06-19
 Publikationsstatus: Final veröffentlicht
 Seiten: 29
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.5194/gmd-17-4791-2024
Organisational keyword: RD2 - Climate Resilience
PIKDOMAIN: RD2 - Climate Resilience
Working Group: Land Use and Resilience
MDB-ID: No data to archive
Research topic keyword: Food & Agriculture
Regional keyword: Global
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Geoscientific Model Development
Genre der Quelle: Zeitschrift, SCI, Scopus, p3, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 17 Artikelnummer: - Start- / Endseite: 4791 - 4819 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals185
Publisher: Copernicus