Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Assessing effects of climate and technology uncertainties in large natural resource allocation problems

Urheber*innen

Steinbuks,  Jevgenijs
External Organizations;

Cai,  Yongyang
External Organizations;

/persons/resource/jonasjae

Jägermeyr,  Jonas
Potsdam Institute for Climate Impact Research;

Hertel,  Thomas W.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

gmd-17-4791-2024.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Steinbuks, J., Cai, Y., Jägermeyr, J., Hertel, T. W. (2024): Assessing effects of climate and technology uncertainties in large natural resource allocation problems. - Geoscientific Model Development, 17, 4791-4819.
https://doi.org/10.5194/gmd-17-4791-2024


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_29976
Zusammenfassung
The productivity of the world's natural resources is critically dependent on a variety of highly uncertain factors, which obscure individual investors and governments that seek to make long-term, sometimes irreversible, investments in their exploration and utilization. These dynamic considerations are poorly represented in disaggregated resource models, as incorporating uncertainty into large-dimensional problems presents a challenging computational task. In this paper, we apply the SCEQ algorithm (Cai and Judd, 2023) to solve a large-scale dynamic stochastic global land resource use problem with stochastic crop yields due to adverse climate impacts and limits on further technological progress. For the same model parameters and bounded shocks, the range of land conversion is considerably smaller for the dynamic stochastic model than for deterministic scenario analysis.