日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Anthropogenic influence on extreme temperature and precipitation in Central Asia

Fallah, B. H., Russo, E., Menz, C., Hoffmann, P., Didovets, I., & Hattermann, F. F. (2023). Anthropogenic influence on extreme temperature and precipitation in Central Asia. Scientific Reports, 13:. doi:10.1038/s41598-023-33921-6.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
s41598-023-33921-6.pdf (出版社版), 9MB
ファイル名:
s41598-023-33921-6.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-

関連URL

表示:
非表示:
説明:
-

作成者

表示:
非表示:
 作成者:
Fallah, Bijan H.1, 著者              
Russo, Emmanuele2, 著者
Menz, Christoph1, 著者              
Hoffmann, Peter1, 著者              
Didovets, Iulii1, 著者              
Hattermann, Fred Fokko1, 著者              
所属:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: We investigate the contribution of anthropogenic forcing to the extreme temperature and precipitation events in Central Asia (CA) during the last 60 years. We bias-adjust and downscale two Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) ensemble outputs, with natural (labelled as hist-nat, driven only by solar and volcanic forcing) and natural plus anthropogenic forcing (labelled as hist, driven by all-forcings), to 0.25∘×0.25∘ spatial resolution. Each ensemble contains six models from ISIMIP, based on the Coupled Model Inter-comparison Project phase 6 (CMIP6). The presented downscaling methodology is necessary to create a reliable climate state for regional climate impact studies. Our analysis shows a higher risk of extreme heat events (factor 4 in signal-to-noise ratio) over large parts of CA due to anthropogenic influence. Furthermore, a higher likelihood of extreme precipitation over CA, especially over Kyrgyzstan and Tajikistan, can be attributed to anthropogenic forcing (over 100% changes in intensity and 20% in frequency). Given that these regions show a high risk of rainfall-triggered landslides and floods during historical times, we report that human-induced climate warming can contribute to extreme precipitation events over vulnerable areas of CA. Our high-resolution data set can be used in impact studies focusing on the attribution of extreme events in CA and is freely available to the scientific community.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2022-11-162023-04-202023-04-262023-04-26
 出版の状態: Finally published
 ページ: 17
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1038/s41598-023-33921-6
MDB-ID: No MDB - stored outside PIK (see DOI)
Organisational keyword: RD2 - Climate Resilience
PIKDOMAIN: RD2 - Climate Resilience
Working Group: Hydroclimatic Risks
Research topic keyword: Attribution
Research topic keyword: Extremes
Research topic keyword: Climate impacts
Model / method: Machine Learning
Model / method: Nonlinear Data Analysis
Model / method: Model Intercomparison
Regional keyword: Asia
OATYPE: Gold - DEAL Springer Nature
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Scientific Reports
種別: 学術雑誌, SCI, Scopus, p3, OA
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 13 通巻号: 6854 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals2_395
Publisher: Nature