Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  The size distribution of spatiotemporal extreme rainfall clusters around the globe

Traxl, D., Boers, N., Rheinwalt, A., Goswami, B., Kurths, J. (2016): The size distribution of spatiotemporal extreme rainfall clusters around the globe. - Geophysical Research Letters, 43, 18, 9939-9947.
https://doi.org/10.1002/2016GL070692

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
7351oa.pdf (beliebiger Volltext), 2MB
Name:
7351oa.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Traxl, Dominik1, Autor              
Boers, Niklas1, Autor              
Rheinwalt, Aljoscha1, Autor              
Goswami, Bedartha1, Autor              
Kurths, Jürgen1, Autor              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The scaling behavior of rainfall has been extensively studied both in terms of event magnitudes and in terms of spatial extents of the events. Different heavy‐tailed distributions have been proposed as candidates for both instances, but statistically rigorous treatments are rare. Here we combine the domains of event magnitudes and event area sizes by a spatiotemporal integration of 3‐hourly rain rates corresponding to extreme events derived from the quasi‐global high‐resolution rainfall product Tropical Rainfall Measuring Mission 3B42. A maximum likelihood evaluation reveals that the distribution of spatiotemporally integrated extreme rainfall cluster sizes over the oceans is best described by a truncated power law, calling into question previous statements about scale‐free distributions. The observed subpower law behavior of the distribution's tail is evaluated with a simple generative model, which indicates that the exponential truncation of an otherwise scale‐free spatiotemporal cluster size distribution over the oceans could be explained by the existence of land masses on the globe.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2016
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1002/2016GL070692
PIKDOMAIN: Transdisciplinary Concepts & Methods - Research Domain IV
eDoc: 7351
Research topic keyword: Complex Networks
Research topic keyword: Nonlinear Dynamics
Research topic keyword: Extremes
Model / method: Machine Learning
Model / method: Nonlinear Data Analysis
Organisational keyword: RD4 - Complexity Science
Organisational keyword: FutureLab - Artificial Intelligence in the Anthropocene
Working Group: Development of advanced time series analysis techniques
Working Group: Network- and machine-learning-based prediction of extreme events
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Geophysical Research Letters
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 43 (18) Artikelnummer: - Start- / Endseite: 9939 - 9947 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals182