English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Analysis of multi-dimensional hydrological alterations under climate change for four major river basins in different climate zones

Wang, X., Yang, T., Wortmann, M., Shi, P., Hattermann, F. F., Lobanova, A., Aich, V. (2017): Analysis of multi-dimensional hydrological alterations under climate change for four major river basins in different climate zones. - Climatic Change, 141, 3, 483-498.
https://doi.org/10.1007/s10584-016-1843-6

Item is

Files

show Files
hide Files
:
7448.pdf (Publisher version), 892KB
 
File Permalink:
-
Name:
7448.pdf
Description:
-
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Wang, X.1, Author
Yang, T.1, Author
Wortmann, Michel2, Author              
Shi, P.1, Author
Hattermann, Fred Fokko2, Author              
Lobanova, Anastasia2, Author              
Aich, Valentin2, Author              
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: Changes in river discharge regimes are regarded as the primary drivers of change of many in-stream ecological processes. While a lot of assessments addressing the hydrological alteration caused by human activities have been conducted for many river basins worldwide, a comprehensive analysis of hydrological alteration over major river basins worldwide under climate change is still limited to date. This study aims to address multi-dimensional hydrological alterations (alterations of multiple river flow characteristics) under climate change for four major rivers on three continents, by means of a consolidated framework consisting of two hydrological models, bias-corrected scenarios from five general circulation models (GCMs), and three Representative Concentration Pathways (RCPs) scenarios. The multi-dimensional hydrological alterations are quantified via the general Indicators of Hydrological Alteration approach (IHA) and two modified IHA methods based on dimensionality reduction. The reliability and advantages for the modified IHA methods are also analyzed. The results show that: (1) A modified IHA method (“NR-IHA method”) where the selected non-redundant IHA indices are basin specific is a valid alternative to the conventional IHA method for evaluating flow regime alteration, in consideration that high agreements in the simulated overall flow regimes alteration degree between it and the conventional IHA method are found during historical and future scenario periods, over four basins (the Upper Yellow River, the Lena River, the Tagus River and the Upper Amazon River). (2) Climate change is expected to remarkably alter overall flow regimes in the Tagus River and Upper Yellow River, especially at the end of the 21st century and under high RCP scenarios, whereas the dominant alteration extent tends to be low in the Lena River and Upper Amazon River in the two future periods. (3) The modified IHA method, preventing double-counting some aspects of the flow regime when assessing alteration degree of overall flow regimes, can save 65 % computation time and is more efficient than the conventional IHA method. It could be beneficial to figure out adaptive countermeasures for water resource management and restoration of eco-environmental systems under climate change.

Details

show
hide
Language(s):
 Dates: 2017
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1007/s10584-016-1843-6
PIKDOMAIN: Climate Impacts & Vulnerabilities - Research Domain II
eDoc: 7448
Research topic keyword: Climate impacts
Research topic keyword: Freshwater
Model / method: Model Intercomparison
Regional keyword: Global
Organisational keyword: RD2 - Climate Resilience
Working Group: Hydroclimatic Risks
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Climatic Change
Source Genre: Journal, SCI, Scopus, p3
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 141 (3) Sequence Number: - Start / End Page: 483 - 498 Identifier: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals80