Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Bidirectional coupling of the long-term integrated assessment model REgional Model of INvestments and Development (REMIND) v3.0.0 with the hourly power sector model Dispatch and Investment Evaluation Tool with Endogenous Renewables (DIETER) v1.0.2

Gong, C. C., Ueckerdt, F., Pietzcker, R. C., Odenweller, A., Schill, W.-P., Kittel, M., Luderer, G. (2023): Bidirectional coupling of the long-term integrated assessment model REgional Model of INvestments and Development (REMIND) v3.0.0 with the hourly power sector model Dispatch and Investment Evaluation Tool with Endogenous Renewables (DIETER) v1.0.2. - Geoscientific Model Development, 16, 17, 4977-5033.
https://doi.org/10.5194/gmd-16-4977-2023

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
gmd-16-4977-2023.pdf (Verlagsversion), 5MB
Name:
gmd-16-4977-2023.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.5281/zenodo.7072625 (Ergänzendes Material)
Beschreibung:
code, reporting and plotting scripts of the REMIND-DIETER paper "Bidirectional coupling of a long-term integrated assessment model with an hourly power sector model"

Urheber

einblenden:
ausblenden:
 Urheber:
Gong, Chen Chris1, Autor              
Ueckerdt, Falko1, Autor              
Pietzcker, Robert C.1, Autor              
Odenweller, Adrian1, Autor              
Schill, Wolf-Peter2, Autor
Kittel, Martin2, Autor
Luderer, Gunnar1, Autor              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Integrated assessment models (IAMs) are a central tool for the quantitative analysis of climate change mitigation strategies. However, due to their global, cross-sectoral and centennial scope, IAMs cannot explicitly represent the temporal and spatial details required to properly analyze the key role of variable renewable energy (VRE) in decarbonizing the power sector and enabling emission reductions through end-use electrification. In contrast, power sector models (PSMs) can incorporate high spatiotemporal resolutions but tend to have narrower sectoral and geographic scopes and shorter time horizons. To overcome these limitations, here we present a novel methodology: an iterative and fully automated soft-coupling framework that combines the strengths of a long-term IAM and a detailed PSM. The key innovation is that the framework uses the market values of power generations and the capture prices of demand flexibilities in the PSM as price signals that change the capacity and power mix of the IAM. Hence, both models make endogenous investment decisions, leading to a joint solution. We apply the method to Germany in a proof-of-concept study using the IAM REgional Model of INvestments and Development (REMIND) v3.0.0 and the PSM Dispatch and Investment Evaluation Tool with Endogenous Renewables (DIETER) v1.0.2 and confirm the theoretical prediction of almost-full convergence in terms of both decision variables and (shadow) prices. At the end of the iterative process, the absolute model difference between the generation shares of any generator type for any year is < 5 % for a simple configuration (no storage, no flexible demand) under a “proof-of-concept” baseline scenario and 6 %–7 % for a more realistic and detailed configuration (with storage and flexible demand). For the simple configuration, we mathematically show that this coupling scheme corresponds uniquely to an iterative mapping of the Lagrangians of two power sector optimization problems of different time resolutions, which can lead to a comprehensive model convergence of both decision variables and (shadow) prices. The remaining differences in the two models can be explained by a slight mismatch between the standing capacities in the real world and optimal modeling solutions based purely on cost competition. Since our approach is based on fundamental economic principles, it is also applicable to other IAM–PSM pairs.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2022-09-062023-07-052023-08-312023-08-31
 Publikationsstatus: Final veröffentlicht
 Seiten: 57
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.5194/gmd-16-4977-2023
Organisational keyword: RD3 - Transformation Pathways
PIKDOMAIN: RD3 - Transformation Pathways
Working Group: Energy Systems
MDB-ID: No MDB - stored outside PIK (see DOI)
Model / method: REMIND
Research topic keyword: Energy
Research topic keyword: Mitigation
Regional keyword: Global
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Geoscientific Model Development
Genre der Quelle: Zeitschrift, SCI, Scopus, p3, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 16 (17) Artikelnummer: - Start- / Endseite: 4977 - 5033 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals185
Publisher: Copernicus