Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Improved alternate wetting and drying irrigation increases global water productivity

Urheber*innen

Bo,  Yan
External Organizations;

Wang,  Xuhui
External Organizations;

van Groenigen,  Kees Jan
External Organizations;

Linquist,  Bruce A.
External Organizations;

/persons/resource/Christoph.Mueller

Müller,  Christoph
Potsdam Institute for Climate Impact Research;

Li,  Tao
External Organizations;

Yang,  Jianchang
External Organizations;

/persons/resource/jonasjae

Jägermeyr,  Jonas
Potsdam Institute for Climate Impact Research;

Qin,  Yue
External Organizations;

Zhou,  Feng
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bo, Y., Wang, X., van Groenigen, K. J., Linquist, B. A., Müller, C., Li, T., Yang, J., Jägermeyr, J., Qin, Y., Zhou, F. (2024): Improved alternate wetting and drying irrigation increases global water productivity. - Nature Food, 5, 1005-1013.
https://doi.org/10.1038/s43016-024-01081-z


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_30612
Zusammenfassung
Rice is the staple food for half of the world’s population but also has the
largest water footprint among cereal crops. Alternate wetting and drying
(AWD) is a promising irrigation strategy to improve paddy rice’s water
productivity—defined as the ratio of rice yield to irrigation water use.
However, its global adoption has been limited due to concerns about
potential yield losses and uncertainties regarding water productivity
improvements. Here, using 1,187 paired field observations of rice yield under
AWD and continuous flooding to quantify AWD effects (ΔY), we found that
variation in ΔY is predominantly explained by the lowest soil water potential
during the drying period. We estimate that implementing a soil water
potential-based AWD scheme could increase water productivity across
37% of the global irrigated rice area, particularly in India, Bangladesh and
central China. These findings highlight the potential of AWD to promote
more sustainable rice production systems and provide a pathway toward the
sustainable intensification of rice cultivation worldwide.