Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Seasonal prediction of Indian summer monsoon onset with echo state networks

Urheber*innen
/persons/resource/takahito.mitsui

Mitsui,  Takahito
Potsdam Institute for Climate Impact Research;

/persons/resource/Niklas.Boers

Boers,  Niklas       
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

25756oa.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mitsui, T., Boers, N. (2021): Seasonal prediction of Indian summer monsoon onset with echo state networks. - Environmental Research Letters, 16, 7, 074024.
https://doi.org/10.1088/1748-9326/ac0acb


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_25756
Zusammenfassung
Although the prediction of the Indian Summer Monsoon (ISM) onset is
of crucial importance for water-resource management and agricultural planning on the
Indian sub-continent, the long-term predictability { especially at seasonal time scales
{ is little explored and remains challenging. We propose a method based on artificial
neural networks that provides skilful long-term forecasts (beyond 3 months) of the ISM
onset, although only trained on short and noisy data. It is shown that the meridional
tropospheric temperature gradient in the boreal winter season already contains the
signals needed for predicting the ISM onset in the subsequent summer season. Our
study demonstrates that machine-learning-based approaches can be simultaneously
helpful for both data-driven prediction and enhancing the process understanding of
climate phenomena.