Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Finite size effect in Kuramoto oscillators with inertia on simplicial complex

Urheber*innen

Lourenço,  Manuel
External Organizations;

Sharma,  Abhishek
External Organizations;

Rajwani,  Priyanka
External Organizations;

Solis,  Erick Alejandro Madrigal
External Organizations;

/persons/resource/Mehrnaz.Anvari

Anvari,  Mehrnaz       
Potsdam Institute for Climate Impact Research;

Jalan,  Sarika
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lourenço, M., Sharma, A., Rajwani, P., Solis, E. A. M., Anvari, M., Jalan, S. (2025): Finite size effect in Kuramoto oscillators with inertia on simplicial complex. - Chaos, 35, 7, 071103.
https://doi.org/10.1063/5.0276809


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_33449
Zusammenfassung
We investigate the finite-size effects of the dynamical evolution on the Kuramoto model with inertia coupled through triadic interactions. Our findings reveal that fluctuations resulting from the finite size drive the system toward a synchronized state at finite coupling, which contrasts with the analytical predictions in thermodynamic limit made for the same system. Building on the analytical calculations performed at the thermodynamic limit, we identify the origin of the synchronization transition that arises because of the finite size. We discover a power-law relationship between the network size and the critical coupling at which the first-order transition to synchronization occurs. Additionally, as inertia increases, there is a significant shift in the critical coupling toward higher values, indicating that inertia counteracts the effects caused by finite size.