English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Evolving climate network perspectives on global surface air temperature effects of ENSO and strong volcanic eruptions

Authors
/persons/resource/tim.kittel

Kittel,  Tim
Potsdam Institute for Climate Impact Research;

/persons/resource/Catrin.Ciemer

Ciemer,  Catrin
Potsdam Institute for Climate Impact Research;

Lotfi,  Nastaran
External Organizations;

Peron,  Thomas
External Organizations;

Rodrigues,  Francisco
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

/persons/resource/Reik.Donner

Donner,  Reik V.
Potsdam Institute for Climate Impact Research;

External Ressource
No external resources are shared
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Kittel, T., Ciemer, C., Lotfi, N., Peron, T., Rodrigues, F., Kurths, J., Donner, R. V. (2021): Evolving climate network perspectives on global surface air temperature effects of ENSO and strong volcanic eruptions. - European Physical Journal - Special Topics, 230, 14-15, 3075-3100.
https://doi.org/10.1140/epjs/s11734-021-00269-9


Cite as: https://publications.pik-potsdam.de/pubman/item/item_26322
Abstract
Episodically occurring internal (climatic) and external (non-climatic) disruptions of normal climate variability are known to both affect spatio-temporal patterns of global surface air temperatures (SAT) at time-scales between multiple weeks and several years. The magnitude and spatial manifestation of the corresponding effects depend strongly on the specific type of perturbation and may range from weak spatially coherent yet regionally confined trends to a global reorganization of co-variability due to the excitation or inhibition of certain large-scale teleconnectivity patterns. Here, we employ functional climate network analysis to distinguish qualitatively the global climate responses to different phases of the El Niño–Southern Oscillation (ENSO) from those to the three largest volcanic eruptions since the mid-20th century as the two most prominent types of recurrent climate disruptions. Our results confirm that strong ENSO episodes can cause a temporary breakdown of the normal hierarchical organization of the global SAT field, which is characterized by the simultaneous emergence of consistent regional temperature trends and strong teleconnections. By contrast, the most recent strong volcanic eruptions exhibited primarily regional effects rather than triggering additional long-range teleconnections that would not have been present otherwise. By relying on several complementary network characteristics, our results contribute to a better understanding of climate network properties by differentiating between climate variability reorganization mechanisms associated with internal variability versus such triggered by non-climatic abrupt and localized perturbations.