Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Causal coupling inference from multivariate time series based on ordinal partition transition networks

Urheber*innen

Subramaniyam,  Narayan Puthanmadam
External Organizations;

/persons/resource/Reik.Donner

Donner,  Reik V.
Potsdam Institute for Climate Impact Research;

Caron,  Davide
External Organizations;

Panuccio,  Gabriella
External Organizations;

Hyttinen,  Jari
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Subramaniyam, N. P., Donner, R. V., Caron, D., Panuccio, G., Hyttinen, J. (2021): Causal coupling inference from multivariate time series based on ordinal partition transition networks. - Nonlinear Dynamics, 105, 1, 555-578.
https://doi.org/10.1007/s11071-021-06610-0


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_26763
Zusammenfassung
Identifying causal relationships is a challenging yet crucial problem in many fields of science like epidemiology, climatology, ecology, genomics, economics and neuroscience, to mention only a few. Recent studies have demonstrated that ordinal partition transition networks (OPTNs) allow inferring the coupling direction between two dynamical systems. In this work, we generalize this concept to the study of the interactions among multiple dynamical systems and we propose a new method to detect causality in multivariate observational data. By applying this method to numerical simulations of coupled linear stochastic processes as well as two examples of interacting nonlinear dynamical systems (coupled Lorenz systems and a network of neural mass models), we demonstrate that our approach can reliably identify the direction of interactions and the associated coupling delays. Finally, we study real-world observational microelectrode array electrophysiology data from rodent brain slices to identify the causal coupling structures underlying epileptiform activity. Our results, both from simulations and real-world data, suggest that OPTNs can provide a complementary and robust approach to infer causal effect networks from multivariate observational data.